If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=250
We move all terms to the left:
4x^2-(250)=0
a = 4; b = 0; c = -250;
Δ = b2-4ac
Δ = 02-4·4·(-250)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*4}=\frac{0-20\sqrt{10}}{8} =-\frac{20\sqrt{10}}{8} =-\frac{5\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*4}=\frac{0+20\sqrt{10}}{8} =\frac{20\sqrt{10}}{8} =\frac{5\sqrt{10}}{2} $
| (2x+6)+(2x+13)=6x+3 | | 90x+3x+4x=180 | | w/5+13=40 | | 4x^-19x^+12=0 | | 90°+3x+4x=180° | | x+8=36+3 | | 5/a=20/28 | | x+8=36+6 | | x+8=36+15 | | 5/27=x/270 | | x+8=15+72 | | 5/6=m/36 | | -43=-y/5 | | 38x+5=180 | | 3y-13=10 | | 2x^2=12x-5 | | 8a^2-16a-1=0 | | 5/a=25/40 | | 4/5=m/25 | | V=77,232-77232x.24x2 | | 2x+5=7x/7 | | (x-5)(x-1)=3x-9 | | 9x+7=5x+1 | | 6x-13=9x-52 | | 3(x1)-5x=12-(6x-7) | | (3x+1)=(6x-11) | | (x+7)+(x+7)+(2x-4)+(2x-4)=114 | | 3(5^2x-3)=1866 | | −8+x/7=−10 | | F(x)=(2x-7)/5 | | 2{h+6}+13=59 | | 512x=512 |